Solving an Inverse Heat Conduction Problem by Spline Method

نویسنده

  • Hassan Dana Mazraeh School of Mathematics and Computer Science, Damghan University, P.O. Box 36715-364, Damghan, Iran.
چکیده مقاله:

In this paper, a numerical solution of an inverse non-dimensional heat conduction problem by spline method will be considered. The given heat conduction equation, the boundary condition, and the initial condition are presented in a dimensionless form. A set of temperature measurements at a single sensor location inside the heat conduction body is required. The result show that the proposed method can predict the unknown parameters in the current inverse problem with an acceptable error.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solving an inverse heat conduction problem by spline method

in this paper, a numerical solution of an inverse non-dimensional heat conduction problem by spline method will be considered. the given heat conduction equation, the boundary condition, and the initial condition are presented in a dimensionless form. a set of temperature measurements at a single sensor location inside the heat conduction body is required. the result show that the proposed meth...

متن کامل

A modified VIM for solving an inverse heat conduction problem

In this paper, we will use a modified  variational iteration method (MVIM) for solving an inverse heat conduction problem (IHCP). The approximation of the temperature and the heat flux at  are considered. This method is based on the use of Lagrange multipliers for the identification of optimal values of parameters in a functional in Euclidian space. Applying this technique, a rapid convergent s...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

A Meshless Computational Method for Solving Inverse Heat Conduction Problem

In this paper, a new meshless numerical scheme for solving inverse heat conduction problem is proposed. The numerical scheme is developed by using the fundamental solution of heat equation as basis function and treating the entire space-time domain in a global sense. The standard Tikhonov regularization technique and L-curve method are adopted for solving the resultant ill-conditioned linear sy...

متن کامل

A Boundary Integral Method for Solving Inverse Heat Conduction Problem

In this paper, a boundary integral method is used to solve an inverse heat conduction problem. An algorithm for the inverse problem of the one dimensional case is given by using the fundamental solution. Numerical results show that our algorithm is effective.

متن کامل

A novel computational procedure based on league championship algorithm for solving an inverse heat conduction problem

Inverse heat conduction problems, which are one of the most important groups of problems, are often ill-posed and complicated problems, and their optimization process has lots of local extrema. This paper provides a novel computational procedure based on finite differences method and league championship algorithm to solve a one-dimensional inverse heat conduction problem. At the beginning, we u...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 1

صفحات  23- 31

تاریخ انتشار 2017-05-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023